Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue.
نویسندگان
چکیده
Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a "fold-specific" inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription-PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.
منابع مشابه
Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملPotent and selective inhibition of membrane-type serine protease 1 by human single-chain antibodies.
Specific human antibodies targeting proteases expressed on cancer cells can be valuable reagents for diagnosis, prognosis, and therapy of cancer. To this end, a phage-displayed antibody library was screened against a cancer-associated serine protease, MT-SP1. A protein inhibitor of serine proteases that binds to a defined surface of MT-SP1 was used in an affinity-based washing procedure. Six an...
متن کاملApoptotic protease-activating factor 1 (Apaf-1) as a liable gene for spontaneous mutations in vitro
The apoptotic protease-activating factor 1 (Apaf-1) receives the death signal in the intrinsic ormitochondrial pathway of apoptosis. Upon the releasing of cytochrome c from theintermembrane space of mitochondria and binding to Apaf-1 molecules, a heptamericapoptosome complex is formed and triggers the downstream cascade of caspases. Here, for thefirst time we present spontaneous mutations and r...
متن کاملPurification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk.
Matriptase, a trypsin-like serine protease with two potential regulatory modules (low density lipoprotein receptor and complement C1r/s domains), was initially purified from T-47D breast cancer cells. Given its plasma membrane localization, extracellular matrix-degrading activity, and expression by breast cancer cells, this protease may be involved in multiple aspects of breast tumor progressio...
متن کاملHATL5: A Cell Surface Serine Protease Differentially Expressed in Epithelial Cancers
Over the last two decades, cell surface proteases belonging to the type II transmembrane serine protease (TTSP) family have emerged as important enzymes in the mammalian degradome, playing critical roles in epithelial biology, regulation of metabolic homeostasis, and cancer. Human airway trypsin-like protease 5 (HATL5) is one of the few family members that remains uncharacterized. Here we demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 20 شماره
صفحات -
تاریخ انتشار 1999